Plug & Play Retrofitting Approach for Data
Integration to the Cloud

1% Santosh Kumar Panda
inlT - Institute Industrial IT
Technische Hochschule Ostwestfalen-Lippe
Lemgo, Germany
santosh.panda@th-owl.de

4™ Mainak Majumder
inlT - Institute Industrial IT
Technische Hochschule Ostwestfalen-Lippe
Lemgo, Germany
mainak.majumder @th-owl.de

Abstract—Driven by rapid digitalisation, production systems
are becoming more flexible and adaptable with the help of emerg-
ing concepts like the Internet of Things (IoT) and Industry 4.0.
Often, these transformations are not fully implemented in Small
and Medium-sized Enterprises (SMEs) due to the replacement
cost of existing machines. This paper aims to develop a Plug &
Play retrofitting platform, where Industry 4.0 compliant sensor
systems can be attached, detected, and configured automatically
to the existing production environment. The purpose of the
retrofitting is to integrate the sensor system with a cloud platform
that would provide persistent storage for sensor data as well as
the functionalities to perform monitoring, analysis, and predictive
learning.

Index Terms—Industry 4.0, Retrofitting, Sensor Node, Plug &
Play, AutomationML, eCl@ss, OPC UA, Asset Administration
Shell, Amazon Web Services

I. INTRODUCTION

With the emergence of Industry 4.0, the industrial environ-
ment is transforming with an increasing number of machines
and their inter-connectivity due to rising levels of digitalisation
and automation [1], [2]. Flexible and adaptable production is
becoming more of a norm in the industry with the introduction
of Cyber-Physical Systems (CPSs) and access to real-time
data. However, the implementation of Industry 4.0 concepts
is still not often realised to its full potential in SMEs due
to the replacement cost of existing hardware [3]. One of the
approaches could be to retrofit an existing industrial envi-
ronment with an Industry 4.0 compliant independent system.
Industry 4.0 is a combination of modern technologies such as
0T, cloud computing, big data, augmented reality, artificial in-
telligence, and information security. The retrofitting approach
doesn’t mean to use all available Industry 4.0 technologies

978-1-7281-5297-4/20/$31.00 ©2020 IEEE

inlT - Institute Industrial IT
Technische Hochschule Ostwestfalen-Lippe

lukasz.wisniewski @th-owl.de

3" Marco Ehrlich
rt-solutions.de GmbH
Industrial Security
Cologne, Germany
ehrlich @rt-solutions.de

2"d T ukasz Wisniewski

Lemgo, Germany

5t Jiirgen Jasperneite
Industrial Automation Branch
Fraunhofer I0SB-INA
Lemgo, Germany
juergen.jasperneite @iosb-ina.fraunhofer.de

but by identifying processes in participant SMEs, features, and
requirements that are required for retrofitting.

This paper intends to define a retrofitting approach by
developing a platform where sensor systems can be easily
attached, detected, configured, and integrated with the existing
environment for monitoring, data analysis, and predictive
learning purposes. The Plug & Play deployment of such
approaches should configure and integrate itself with minimum
overhead similar to a Universal Serial Bus (USB) device when
connected to a Personal Computer (PC). Further, the Plug
& Play deployment requires to have a standardised semantic
description, communication capabilities, and persistent data
storage [4]. Nowadays, various cloud platform provides the
functionality for storage, analysis, condition monitoring, and
predictive learning based on the acquired data [5]. Therefore,
the sensor data is integrated into a cloud platform to avail
these above features. Such an approach will provide Industry
4.0 functionalities to legacy machines, and the Plug & Play
approach will allow faster connection and increase efficiency
without the need for highly trained engineers.

The remainder of the paper is organised as per the following.
Section II gives an insight into the related work for Plug &
Play, retrofitting approach, and cloud integration. Section III
briefly describes AutomationML as the semantic device de-
scription. OPC Unified Architecture and its discovery features
are described in section IV as middleware communication.
Section V details the requirement for the retrofitting approach.
Section VI provides an approach for Plug & Play data integra-
tion between the sensor systems and the cloud platform. The
implementation is evaluated in Section VII. Finally, Section
VIII concludes the paper by summarising the approach for
Plug & Play integration and detailing the future scope.

II. RELATED WORK

Microsoft introduced Plug & Play concept for the computer
system in Windows 95. It was the first operating system
which would attempt to detect and configure USB devices
automatically after connecting them to a computer. Universal
Plug & Play (UPnP) allows detecting specific services on
a network automatically for home and office network [6].
Analogous to the Plug & Play for computers, Industry 4.0
also applies the concept of Plug & Produce capabilities for
production systems, where new entities can be integrated into
an existing system with minimum resources and short time
resulting in production flexibility.

The white paper [4] details a use-case for Plug & Produce
integration of field devices into an existing system. It proposes
an approach based on OPC Unified Architecture (IEC 62541)
mapped with AAS based on standardised device description
such as OPC UA Device Interface (IEC 62541-100) [7],
NAMUR NE 131!, AutomationML (IEC 62714), and Field
Device Integration (IEC 62769). M. Schleipen et al. describe
an approach based on OPC UA and AutomationML for Plug
& Work and details a prototypical implementation in [8]. S.
Profanter et al. define a Plug & Produce device discovery
and auto-configuration by implementing OPC UA multi-cast
discovery services for an industrial network in [9]. S.K. Panda
et al. describe an automatic approach to integrating the digital
representation of components based on OPC UA [2].

As part of the Industry 4.0 vision, the future industry
is going to be highly interconnected with modern sensor
systems and communication infrastructure. Machines and field
devices should be adaptable and self-optimised by sharing
data properties and configuration details among one another.
However, it is not the usual case for older machinery and
equipment because the replacement costs for modernisation of
the industry are very high. An alternative can be a retrofitting
of legacy machines by developing communication interfaces
and IoT devices to provide Industry 4.0 advantages without
buying new machines.

C. Horn and J. Kriiger describe a retrofitting approach for
machinery with legacy communication interfaces in [10]. They
propose an application-oriented concept utilizing different
connecting approaches to enable new value-added services
to interact with machinery with legacy connection inter-
faces. In [11], H. Haskamp et al. summarise the process
for retrofitting a flexible manufacturing system by integrating
legacy Programmable Logic Controllers, Radio Frequency
Identification, and commercial cloud technology based on an
Industry 4.0 compliant digitalisation of components with OPC
UA interfaces. In [12], T. Lins et al. propose a retrofitting
approach through a platform regardless of the model or type
of the industrial equipment and offers resources to integrate
this equipment with Industry 4.0. The platform utilises tech-
nologies such as Software-Defined Networking (SDN), OPC
UA, and cloud computing by establishing integration and

Thttps://www.namur.net/en/index.html

communication management of industrial equipment and IoT
Sensors.

Cloud Computing can be referred to as the on-demand
delivery of computing power, data storage, applications, and
other IT resources through a cloud services platform via the
Internet or local network in case of public or private cloud
respectively [13]. One of the key benefits of cloud computing
is the opportunity to replace infrastructure expenses, such as
hardware and maintenance, with a low variable cost that scale
with the business requirements. With the increasing popularity,
several models and deployment strategies have emerged to
meet the specific needs of different users and provides different
levels of control, flexibility, and management.

In [14], the authors discuss the changes in data integration
approaches for enterprise applications around the use of cloud-
based systems. Also, the authors define various new patterns
or requirements that enterprises should consider when they ap-
proach data integration within cloud-based domains. C. Zhu et
al. focus on the integration of Wireless Sensor Network (WSN)
and cloud computing in [15]. The authors have identified
four research problems for the WSN and proposed working
solution for each one of them. Also, the authors in [10] and
[12] describe the cloud integration of machinery based on
retrofitting approach.

However, it can be observed that Plug & Play, retrofitting,
and cloud computing can be brought together to have a
flexible, fast, cost-effective, and scalable Industry 4.0 applica-
tion. Therefore, this paper combines all these approaches and
proposes a solution for Plug & Play retrofitted data acquisition
system that is integrated with a cloud platform to perform var-
ious application-oriented functionalities. Moreover, the work
also utilises the Industry 4.0 technologies such as Plug &
Play, Asset Administration Shell, cloud integration to provide
digitalisation through retrofitting.

III. AUTOMATIONML
A. Overview

AutomationML is a data exchange format developed by
AutomationML e.v. in 2006 that not only focuses on process
and plant engineering but also covers all the relevant infor-
mation regarding production systems [16]. It is an appropri-
ate candidate as a data exchange model for heterogeneous
manufacturing industry due to its open and vendor-neutral
XML-based format. It follows an object-oriented paradigm
to model physical and logical components of any production
system. It is also standardised within IEC 62714 standard
series [16]. AutomationML describes the system hierarchy
based on Computer Aided Engineering Exchange (CAEX).
CAEX is an XML based neutral data format which allows
storing hierarchical object information, e.g., structure of a
production system. AutomationML follows a modular struc-
ture to accommodate other existing XML-based formats for
data exchange under a single umbrella through the use of
CAEX for modelling of production system components, its
properties, and relations. AutomationML provides integration
with COLLADA, PLCopen, eCl@ss, and many other formats.

AutomationML is divided into four parts based on the CAEX
format and described briefly in Table I [16].

TABLE I
AUTOMATIONML COMPONENTS

Name
Role Class Library

Description
Comprises of RoleClass that describes
the semantics of objects in an abstract

manner.
Stores the reusable system components

or known as templates for system mod-
elling specified by SystemUnit Class.
Consists of external interfaces among
objects specified by InterfaceClass
Represents the actual engineering data
following an object oriented and hier-
archical structure through internal ele-
ments referencing role and system unit
classes to provide their semantics.

System Unit Class Library

Interface Class Library

Instance Hierarchy

B. Asset Administration Shell model in AutomationML

The concept of the Asset Administration Shell (AAS)
described in the Reference Architecture Model for Industry
4.0 (RAMI 4.0) [17] implements the methodology to represent
a physical device virtually and its technical capabilities. It
provides a standardised interface to describe its data ele-
ments through a semantic description and the communication
capabilities through a middleware communication protocol.
The combination of the physical device, its AAS, and the
communication capabilities between them is defined as an
Industry 4.0 component. The retrofitted system is considered
as an asset and designed based on AAS standards. The AAS
will be able to provide all the properties of its embodied asset
and the current and historical data for its connected sensors.
The AAS consists of various submodules. The submodules are
responsible for the identification, data properties, or services
based on a standardised format. In this paper, the retrofitted
system components are modelled by considering AAS as per
the standardisation provided in [18].

Identification Assets

Identification Administration shell

.and further

e

Header

2
5
=
-
£
g
g
=
S

Fig. 1. Structure of an Asset Administration Shell [19].

The modelling of the retrofitted system must follow the
semantics defined in the Asset Administration Shell represen-
tation by using AutomationML. The AAS consists of the em-
bodied asset as well as the submodels to describe the properties

and elements of the asset. Optionally, it can contain views
and dictionaries for stakeholders and semantics respectively.
The dictionaries contain concept descriptions that are used
to describe the semantics of the submodels. The submodels
consist of several submodel elements, and these elements can
be properties, variables, or collection. These submodels and
their elements can adhere to an industry-specific catalogue
that defines the syntax and semantics for the components and
their properties. One of such catalogue can be eCl@ss> which
can exchange data and is interpretable by all the participants
in a production system through its object definition hierarchy
with unique object properties [20]. eCl@ss is an ISO/IEC-
compliant data standard for grouping of product-specific prop-
erties to provide a hierarchical and semantic representation
of products and materials through its numeric class structure
[20]. These classes feature lists of standardised properties
with an accurate description for subsequent identification of
products and services. The submodel elements can refer to an
eCl@ss property through its semanticld in HasSemantics. The
AML meta-model provides various RoleClasses that defines
the elements of the AAS as well as the mapping to create the
InstanceHierarchy in AutomationML. Fig.2 shows the AAS
meta-model RoleClasses in AutomationML editor.

Bal

e

4 @ AssetAdministrationShellRoleClassLib
el AscetAdministrationShell {Class: AutomationMLBaseRole }
[Re] Asset{Class: AutomationMLBaseRole }
[Submodel{Class: AutomationMLBaseRole }
el SubmodelElementCollection{Class: AutemationMLEaseRole }
[t Blob{Class: AutomationMLBaseRole }
[l Capability [Class: AutomationMLBaseRale }
I g File
Rt Property {Class: AutormnationMLBaseRole }
[» [re| ReferenceElement{Class: AutomationMLBaseRole }
I e RelationshipElement {Class: AutomationMLBaseRole }
[t AnnotatedRelationshipElement {Class: RelationshipElement }
Rt Operation {Class: AutormnationMLBaseRole }
[t} OperationinputVariables{Class: AutomationMLBaseRole }
[kl OperationOutputVariables {Class: AutomationMLBaseRole }
[t OperationinoutputVariables {Class: AutomationMLBaseRole }
el View {Class: Group }
[t} ConceptDictionary {Class: AutormnationMLEaseRole }
[l ConceptDescription {Class: AutomationMLBaseRole }
[t DataSpecification {Class: AutomationMLBaseRole }
Rt DataSpecificationContent{Class: AutomationMLBaseRole }
4 @ AutomationMLBaseRoleClassLib
I e AutomationMLBaseRole

Fig. 2. Asset Administration Shell meta-model represented through Automa-
tionML RoleClass [20].

IV. OPC UNIFIED ARCHITECTURE
A. OPC UA in Industry 4.0

OPC Unified Architecture (OPC UA) is a service-oriented,
platform-independent, machine-to-machine, and machine-to-
enterprise communication protocol developed by the OPC
Foundation [21], [22]. OPC UA defines the communication
mechanism through a client-server or a publisher-subscriber

Zhttps://www.eclasscontent.com

model and allows information to be connected in different
ways by extending additional vendor-specific information to
the OPC UA base model. One of the challenges in Industry
4.0 is to provide a secure, standardised exchange of data and
information between devices, machines, and services across
different industries. OPC UA can be deemed as the appropriate
communication solution for Industry 4.0 as it provides various
functionalities, such as simple data acquisition, monitoring,
control and analysis, security, and integrating other standards
through its companion specification by providing standardised
information model.

B. AutomationML to OPC UA Specification

As described in section III, AutomationML is an XML-
based description for production systems. It can describe the
system components ranging from small sensors to various
complex machines, including their hierarchies and topologies.
This information can be exchanged among parties through
a communication middleware. Therefore, OPC Foundation
and AutomationML consortium have worked together to cre-
ate an OPC UA companion specification for AutomationML
[23]. The information described in AutomationML can be
communicated using OPC UA architecture by combining
AutomationML and OPC UA. The companion specification
[23] provides all the necessary information regarding the
transformation rules to generate OPC UA information model
from an AutomationML model.

C. OPC UA Discovery

The discovery process in OPC UA allows clients to find
servers in the same network and then discover how to connect
to the server. The individual servers must be registered to a
discovery server which provides a way for clients to find the
registered servers. The different discovery servers in OPC UA
are Local Discovery Server (LDS), Local Discovery Server
with Multicast Extension (LDS-ME), and Global Discovery
Server (GDS) [24]. For a Plug & Play setup, the underlying de-
vices must be identified without any specific pre-configuration
and must be discovered automatically. For this purpose, OPC
UA Discovery provides the necessary functionalities through
its services to have a Plug & Play setup.

V. REQUIREMENTS ANALYSIS

The sensor systems are connected to an edge device which
is responsible for integrating the sensor data into a cloud
platform. The edge device is also responsible for discovery
feature and communication capability from the local device
to the cloud platform. The sensor system must execute the
necessary steps to be able to provide the retrofitted system
properties and the connected sensor data through a standard
information model. Also, it must be discovered by the edge
device automatically to advertise its information and connec-
tion requirements. The requirements are identified based on the
primary task of this paper and are divided into four sections —
Sensor Node, Discovery of Sensor Node, Auto-Configuration,
and Cloud Integration.

A. Requirement for Sensor Node

The sensor node is a hardware system that has to be
designed in such a way that it can be easily adapted to
different industrial application scenarios. Depending on the
individual process or machine characteristics, different sensors
are connected to the hardware through serial communica-
tion to measure different physical process parameters. To be
able to achieve Plug & Play functionality, the sensor node
must be able to set up all necessary functionalities, such
as device information, communication capabilities, and self-
advertisement abilities without any manual intervention. To
increase equipment efficiency, fast connectivity, and reduce
cost, the sensor nodes are needed to be connected and start
operation without any specific pre-configuration. The follow-
ing requirements have been derived for the sensor node to
accomplish an effortless retrofitting.

1) Each sensor node must receive the network connectivity
without any manual intervention through any modern IP
based wireless connectivity.

2) The sensor node must be capable to provide the data el-
ements of the retrofitted system as well as the connected
sensors through a standardised information model from
a semantic description e.g. AutomationML.

3) The sensor node should setup its communication ca-
pability through a platform independent middleware to
provide its data elements across the existing system for
cloud integration.

4) Each newly connected sensor node should be advertised
across the existing system to be discovered and config-
ured to provide all sensor information.

B. Discovery of Sensor Node

After the sensor node is plugged into the existing network,
it needs to perform the tasks described in the previous section
to be able to register itself with the edge device. In an
IP based network, automatic network connectivity can be
assigned through the Dynamic Host Configuration Protocol
(DHCP). Therefore, the edge device must function as a DHCP
server as well as must have a discovery service to discover
the underlying sensor nodes and can connect to them without
any network-specific pre-configuration. The discovery service
not only should have the information of registered servers
when they are connected but also it should the functionality to
remove the information of sensor nodes when they are plugged
out of the system.

C. Auto-Configuration

The auto-configuration is divided into 2 parts — auto-
configuration in the sensor node and auto-configuration in the
edge device.

1) Auto-Configuration in the Sensor Node: The configura-
tion in the sensor node should be carried out by identifying the
semantic description, creating its information model from the
semantic description to provide access to its data elements,

and creating the necessary communication stack to commu-
nicate with its sensors. The whole process should be done
automatically to achieve the Plug & Play functionality.

2) Auto-Configuration in the Edge Device: The primary
challenge for the edge device is to identify the sensor nodes,
configure itself to communicate with them, and perform nec-
essary tasks for each sensor node for the cloud integration.
The edge device should be able to access the information
model of each sensor nodes to create configuration files for
cloud integration. Since one of the main focus is to avoid pre-
configuration, a Plug & Play process should be developed to
complete these tasks automatically by incorporating OPC UA
discovery client and cloud functionalities.

D. Cloud Integration

A cloud platform has to be chosen that has the functionality
to provide cloud-based management features like analytics,
persistent storage, and machine learning models. OPC UA is
being used for the necessary communication functionalities
for sensor nodes and the edge device for the Plug & Play
integration. Therefore, the cloud platform should also have
the functionality to connect to an OPC UA server. Based on
these above requirements, Amazon Web Services (AWS) has
been used for the cloud application as it fulfils these basic
cloud requirements for the retrofit approach.

AWS IoT Greengrass extends cloud capability to local de-
vices by using AWS Lambda functions to create serverless ap-
plications. these applications can be deployed in local devices
in order to establish a connection to AWS IoT Core as well as to
perform specific tasks. In this case, each AWS Lambda function
consists of an OPC UA client and the AWS loT Greengrass
functionalities. It is responsible for connecting to its OPC UA
server and establish communication between the edge device
and AWS IoT Core. Further, AWS IoT SiteWise can be used to
collect the sensor data to monitor it in large scale. With AWS
1oT SiteWise, sensor data streams can be grouped from multi-
ple locations by production line and facilities so operators can
better understand and improve processes across facilities. AWS
IoT SiteWise can create models of industrial processes and
equipment across multiple facilities, and then automatically
discover and visualise live and historical asset data through
customisable charts and dashboards through launching a web
application. The AAS meta-model can be mapped to asset
models in AWS IoT SiteWise, and the AAS model can be
instantiated from the asset models. The modelling can adhere
to the AAS specification and the sensor values can be assigned
to the asset properties in AWS IoT SiteWise to provide real-time
and historical data for the sensors.

VI. PLUG & PLAY RETROFITTING APPROACH

The Plug & Play approach defines an architecture to in-
tegrate the sensor nodes to the cloud. The retrofitting ar-
chitecture is divided into three layers — Sensor Node layer,
Edge Device layer, Cloud layer. Also, the approach details
the implementation and visualisation of AAS for the sensor

nodes. Fig. 3 shows the general architecture for the retrofitting
approach.

P

AWS loT Core

Cloud Layer

Server Information
AWS Lambda Function s

AWS loT Greengrass Core

Edge Device

% UA « Find Servers on Network Q c

Discovery Server Client

Edge Device Layer

Server

Sensor Node

Serial Gomm

Sensor

Sensor Node

Serial Gomm

sensor

Sensor Node Layer

Sensor Sensor

Fig. 3. Proposed retrofitting architecture.

A. Asset Administration Shell for Sensor Nodes

In the design phase, the AutomationML data model is
considered as the AAS model which consists of the Instance
Hierarchies for the AAS and the ConceptDescription. The
model uses eCl@ss International Registration Data Identifier
(IRDI) as the semantic identifier for the submodels and
submodel elements. The retrofitted system is considered as
an asset, which is embodied inside the AAS. The sensors
of the newly installed sensor system are regarded as the
OperationalData submodel. The OperationalData submodel
contains the sensors as InternalElements, which is capable
to provide the run-time data in operational phase through
its attributes. The OPC UA AddressSpace derived from the
AutomationML model is considered as the Administration
Shell in the operation phase with live-data. An example of
a bakery machine is shown in Fig. 4, which is retrofitted with
temperature and pressure Sensors.

B. Sensor Node Layer

A retrofitted system can have only one sensor node. How-
ever, the sensor node layer consists of one or more sensor
nodes, each comprising of multiple numbers of sensors across
the shop floor for multiple retrofitted system. These nodes
acquire the IP address from the DHCP server of the edge
device by connecting to it via an IP based wireless protocol
such as WiFi or 6LowPAN (IPV6 over Low Wireless PAN).
The sensor nodes are preferably based on a Micro-Controller
Unit (MCU) or any single board computers, such as Raspberry
Pi or Arduino. The sensor nodes are designed by analysing

) "
4 "= AssetAdministrationShellinstanceHierarchy
4 [ie] BakeryMachineAd hell {Role:
4 [BakeryMachine {Role: Asset}
[AssetAdministrationShellRoleClassLib/Asset
4 (i8] |dentification {Role: Submodel }
4 (€] Manufacturer {Role: Property}
& AssetAdministrationShellRoleClassLib/Property
4 [i€] GLN {Role: Property}
& AssetAdministrationShellRoleClassLib/Property
4 [ig] ArticleNumber {Role: Property}
& AssetAdministrationShellRoleClassLib/Property
4 [i€] Description {Role: Property}
5 AssetAdministrationShellRoleClassLib/Property
) AssetAdministrationShellRoleClassLib/Submodel
4 [1€] OperationalData { Role: Submodel}
4 [i€] TemperatureValue {Role: Property}
& AssetAdministrationShellRoleClassLib/Property
4 [ig] PressureValue {Role: Property}
& AssetAdministrationShellRoleClassLib/Property
[AssetAdministrationShellRoleClassLib/Submodel

ionShell }

) ionShellRoleClassLib// d ionShell

4 7 AssetAdministrationShellConceptDescriptions
4 [iE] TemperatureValue_URI_www_company_com_ids_cd 9542 4111_3002_7194 { Role: ConceptDescription}
4 [1e] EmbeddedDataSpecification {Class: DataSpecificationlEC61360 Role: DataSpecificationContent
[AssetAdministrationShellRoleClassLib/DataSpecificationContent
& AssetAdministrationShellRoleClassLib/ConceptDescription
4 [iE] PressureValue_URI_ www_company_com_ids_cd_D062_4111_3002_3884 { Role: ConceptDescription}
4 [ie) EmbeddedDataSpecification {Class: DataSpecificationlEC61360 Role: DataSpecificationContent}
AssetAdministrationShellRoleClassLib/DataSpecificationContent
% AssetAdministrationShellRoleClassLib/ConceptDescription

Fig. 4. Asset Administration Shell for a bakery machine based on Automa-
tionML and AAS meta model.

the processes and machines involved in the existing system to
identify important process parameters based on their influence
on each process and product. After the influencing process
parameters were identified, corresponding sensors according
to the identified parameters are connected to their respective
sensor node via serial communication such as Inter-Integrated
Circuit (I2C), Serial Peripheral Interface (SPI), or Modbus. An
AutomationML model based on AAS specification is stored
in the sensor node for the retrofitted system. The sensor
node provides information of the retrofitted machine through
its AddressSpace and also the communication capability to
fetch the values from these sensors through a callback. Once
the server is set up and operational, it registers itself to the
discovery server of the edge device. Fig.5 shows the OPC UA
AddressSpace of the AAS in UAExpert.

C. Edge Device Layer

This layer consists of a device which can be an embedded
Linux device or an industrial PC. The device has an OPC
UA discovery server that provides the connection requirements
for each OPC UA server from the underlying sensor nodes
through OPC UA Discovery services. It also has an OPC UA
client which fetches the endpoints of the registered servers and
connects to them to get the information from their respective
AddressSpaces. It also stores the server details in a database.
Based on this information from the database, an AWS Lambda
function is created for each sensor node. The function provides
the sensor values by creating a JSON payload and sends it to
the cloud via the AWS IoT Greengrass core software which
manages the communication between the device and the cloud
application.

Address Space =
2 Mo Highlight
i) Root
v I3 Objects
~ I AutomationMLFiles
v iy aas_newaml|
« FileName
~ | InstanceHierarchies
~ I AssetAdministrationShellConceptDescriptions
e PressureValue_URI_www_company_com_ids_cd_0062_4111_3002_3884
o TemperatureValue_ URLwww_company com_ids_cd 9542 4111_3002 7194
¥ Version
~ |2 AssetAdministrationShelllnstanceHierarchy
~ % BakeryMachineAdministrationShell
& BakeryMachine
@ D
&g Identification
v @& OperationalData
@ D
e PressureValue
s TemperatureValue
@ category
dataSpecification
idShert
identification
kind
‘@ semanticld
category
@ idShort
identification
¥ Version

a
@
a
@

Fig. 5. OPC UA AddressSpace of the Asset Administration Shell for a bakery
machine.

D. Cloud Layer

The cloud layer consists of the AWS IoT Core, which is
responsible for providing necessary administrative functionali-
ties. Such functionalities can be security and access certificates
for the communication between the edge device and the AWS
cloud. The AWS IoT Core manages the AWS IoT greengrass
Group which deploys programming models to the edge device
through the associated AWS Lambda function. Each edge
device has its AWS greengrass Group. And, each associated
sensor node of the edge device has its AWS Lambda function.
These functions are associated with the corresponding AWS
greengrass Group of the edge device. Also, the AAS model
hierarchy is created in the cloud application, which represents
its corresponding sensor node and the sensors. In AWS [loT
SiteWise, the asset models and assets are created for the AAS
meta-model and its instances respectively based on the AAS.
And, they are being configured to get the sensor values from
AWS IoT Core and store the real-time and historical values of
their respective sensor. Fig.6 shows the sequences for the Plug
& Play retrofitting working principle.

VII. EVALUATION AND IMPLEMENTATION

The purpose of this work was to achieve a retrofitting
platform where a sensor system can be capable to acquire
process parameters in legacy machines and integrate them to
a cloud platform for analysis. Aiming to achieve Industry 4.0
functionalities, a case-study was defined for food industries
where the quality of ingredients would be analysed based
on the data collected by the retrofitted system. Therefore, a
temperature/pressure sensor system is designed for a bakery
machine as most of the industrial food processes require pre-

Retrofitting Working Principle

Sensor Node OPC UA Server OPC UA Discovery Server
L 2 L : l
Server Register

Get endpoints of registered server

OPC UA Client

AWS loT AWS Greengrass Core
T T

Sensor Node

Deploy the lambda function

(leop__/ [AS per Publish Interval]

S
AWS Lambda Function

OPC UA Client

i
Read Variables

'
Write Variables
T

Publish Variables' Vaiue

i
1
)
]
I
i
i
i
i
|
L
T
i
i
i
i
i
i
i
i
i
i
i
|
| 1
! Subscribe to the Variables via OPC UA client
i
|
i
|
i
I
T
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
|
T

Create MQTT topic and payload :
'

I
AWS Greengrass SDK

Stream MQTT payload to cloud

Sensor Node OPC UA Server OPC UA Discovery Server

OPC UA Client

AWS loT ‘ AWS Greengrass Core Sensor Node

Fig. 6. Retrofitting working principle sequence diagram.

cise temperature analysis being one of the important physical
parameters and can influence various chemical reactions in a
food manufacturing industry.

The Plug & Play set up in both the sensor node and the edge
device is implemented in C++. The sensor node comprises an
STM32 MCU coupled with a WiFi module. The sensors are
connected to it through the I2C protocol. The AAS model
is created by using AAS Package Explorer, and exported
to an AutomationML model. The generated model referred
to eCl@ss for the semantics of submodels and submodel
elements. The OPC UA implementation is done by using
Open62541 stack, which also provides the discovery services.
Once the sensor node is set up, it acquires an IP address from
the DHCP server of the edge device and creates the OPC UA
information model by accessing the AutomationML model for
the AAS. An AutomationML to OPC UA transformation tool
is developed based on the companion specification. Then, it
creates the OPC UA server configuration files based on the
information model and 12C functions.

The edge device is a Raspberry Pi enabled with a wired
internet connection. A DHCP server is implemented in the
Raspberry Pi and it has been checked that the sensor node is
assigned with an IP address from the Raspberry Pi. An LDS
server is implemented and evaluated that it can discover all
the registered servers. The Plug & Play setup in this device is
responsible for fetching all the information of the registered
servers and store them in a database. Then, it connects to the
database and access the AddressSpace of the registered servers
and create the AWS Lambda configuration files and deploy
them into the AWS IoT Cloud.

In AWS IoT SiteWise, asset models and assets are created

for the AAS meta-models and instances. In AWS IoT Core,
rules have been created for each subscriptions from the AWS
Lambda function. Then a visualisation portal in AWS loT
SiteWise is created according to the requirements to show the
sensor values. The Fig. 7 shows the values of a temperature
sensor connected to retrofitted bakery machine.

VIII. CONCLUSION

The idea of this paper is to develop a platform where sensor
systems can easily be attached, detected, and automatically
configured into an existing system for monitoring, analysis,
and learning purpose. Therefore, a sensor system is designed
and integrated with a cloud platform in a Plug & Play setup
in order to acquire sensor data for the above purposes. The
requirements were discussed, and respective technologies were
mapped with each of them. An architecture has been proposed
for the Plug & Play retrofitting approach comprising of 3
layers — Sensor Node Layer, Edge Device Layer, and Cloud
Layer based on AutomationML to OPC UA transformation,
OPC UA Discovery, and AWS respectively. The working
principles have been implemented in C++ and have been tested
and evaluated. The system can easily be integrated with any of
the existing systems for process monitoring and analysis also
the acquired data can further be used for a learning model
to identify defect by using AWS IoT Analytics and AWS IloT
Greengrass ML Inference respectively.

Further, the idea is to implement each sensor node with
other low power wireless protocols and be compared with
WiFi with respect to performance and power consumption.
Further, the sensor nodes will be integrated with different
serial communication to make it heterogeneous and provide an
interoperable solution through OPC UA. Also, the AAS for the

Smart Food

Sensor Values

Last 10 minutes. v 13 Mar 2020 14:33:59

BakeryMachineAdministrationShell/OperationalData/TemperatureValue/value

Temperature Value (°C)

Time in CET

13 Mar 2020 14:43:59

CET ¥ LIVE

Fig. 7. Temperature Sensor Value in AWS.

retrofitted system will be modelled according to a composite
Industry 4.0 component by including the information from the
installed sensor system.

ACKNOWLEDGEMENT

This work is supported under the Smart Food Technology-
OWL initiative together with partners from small and medium
enterprises, industry companies, and research institutes from
OWL University of Applied Science and Arts— Institute Indus-
trial IT (inIT) and Institut fiir Lebensmitteltechnologie. NRW
(ILT.NRW).

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

REFERENCES

B. Vogel-Heuser, T. Bauernhansl, and M. Hompel, Handbuch Industrie
4.0, ser. Springer Reference Technik. Springer Berlin Heidelberg, 2017.
S. K. Panda, T. Schroder, L. Wisniewski, and C. Diedrich,
“Plug&Produce Integration of Components into OPC UA based data-
space,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, Sep. 2018, pp.
1095-1100.

S. K. Panda, A. Blome, L. Wisniewski, and A. Meyer, “Iot retrofitting
approach for the food industry,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2019, pp. 1639-1642.

“Industrie 4.0 Plug-and-Produce for Adaptable Factories: Example Use
Case Definition, Models, and Implementation,” Federal Ministry for
Economic Affairs and Energy (BMWi), Tech. Rep., June 2017.

W. A. Khan, L. Wisniewski, D. Lang, and J. Jasperneite, “Analysis of the
requirements for offering industrie 4.0 applications as a cloud service,”
in 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), June 2017, pp. 1181-1188.

I. C. et. al., “Upnp device architecture,” UPnP Forum, Tech. Rep.,
October 2008.

“OPC Unified Architecture for Devices Companion Specification,” OPC
Foundation, Tech. Rep., July 2013.

M. Schleipen, A. Liider, O. Sauer, H. Flatt, and J. Jasperneite, “Re-
quirements and concept for plug-and-work,” at-Automatisierungstechnik,
vol. 63, no. 10, pp. 801-820, 2015.

S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll, “OPC UA for plug
& produce: Automatic device discovery using lds-me,” in 2017 22nd
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2017, pp. 1-8.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]
[21]
[22]

(23]

[24]

C. Horn and J. Kriiger, “A retrofitting concept for integration of ma-
chinery with legacy interfaces into cloud manufacturing architectures,” in
2016 16th International Conference on Control, Automation and Systems
(ICCAS), Oct 2016, pp. 350-352.

H. Haskamp, F. Orth, J. Wermann, and A. W. Colombo, “Implementing
an opc ua interface for legacy plc-based automation systems using the
azure cloud: An icps-architecture with a retrofitted rfid system,” in 2018
IEEE Industrial Cyber-Physical Systems (ICPS), May 2018, pp. 115—
121.

T. Lins, R. Augusto Rabelo Oliveira, L. H. A. Correia, and J. Sa
Silva, “Industry 4.0 retrofitting,” in 2018 VIII Brazilian Symposium on
Computing Systems Engineering (SBESC), Nov 2018, pp. 8-15.
“Overview of amazon web services,” Amazon Web Services, Inc., Tech.
Rep., December 2018.

D. S. Linthicum, “Cloud computing changes data integration forever:
What’s needed right now,” IEEE Cloud Computing, vol. 4, no. 3, pp.
50-53, 2017.

C. Zhu, X. Li, H. Ji, and V. C. M. Leung, “Towards integration of
wireless sensor networks and cloud computing,” in 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom), Nov 2015, pp. 491-494.

“AutomationML in a Nutshell,” AutomationML consortium, Tech. Rep.,
November 2015.

“Structure of the Administration Shell,” Federal Ministry for Economic
Affairs and Energy (BMWi), Tech. Rep., April 2016.

“Details of the Asset Administration Shell,” Federal Ministry for Eco-
nomic Affairs and Energy (BMWi), Tech. Rep., November 2019.
“Relationships between i4.0 components — composite components and
smart production continuation of the development of the reference model
for the i4.0 sg models and standards,” Federal Ministry for Economic
Affairs and Energy (BMWi), Tech. Rep., June 2017.

“Application Recommendation: AAS Representation,” AutomationML
consortium, Tech. Rep., November 2019.

“Opc unified architecture specification part 1: Overview and concepts,”
OPC Foundation, Tech. Rep., November 2017.

W. Mahnke, S. Leitner, and M. Damm, “Chapter 1 - introduction,” in
OPC Unified Architecture. Springer, 2009, pp. 1-18.
“AutomationML Whitepaper: OPC Unified Architecture Information
Model for AutomationML,” AutomationML consortium, Tech. Rep.,
March 2016.

“OPC Unified Architecture Specification Part 12: Discovery,” OPC
Foundation, Tech. Rep., July 2015.

