
Architecture for Knowledge Exploration of
Industrial Data for Integration into Digital Services

Jan Nicolas Weskamp∗, Arnab Ghosh Chowdhury †, Florian Pethig∗, Lukasz Wisniewski†
∗Fraunhofer IOSB-INA

{jan.nicolas.weskmap, florian.pethig}@iosb-ina.fraunhofer.de
†Technische Hochschule OWL - Institut für industrielle Informationstechnik (inIT)

{arnab.ghosh, lukasz.wisniewski}@th-owl.de

Abstract—Gaining added value from industrial data is a
challenging process. It is often not known what data is available,
in what form and what it means. In addition, the infrastructure
to integrate the data into appropriate services is often missing.
Another challenge is the heterogeneity of solutions, technologies
and infrastructure on the shop floor. This paper presents a
solution that integrates industrial data based on Industrie 4.0
technologies from the shop floor and provides it to a knowledge
platform. The proposed solution is working as autonomous and
automated as possible. The existing data and metadata are used
to automatically configure and instantiate the components of the
platform. Users of the platform can interact with the platform
via a web application and use data or services relevant to them.
There is also an interface that allows services to search directly
for required data. To achieve this, components were developed to
collect data from the production. Furthermore there is a knowl-
edge platform where the data is prepared, stored and searched.
This platform interacts with a middleware and the services, so
that the data arrives automatically at its desired destination.
The solution was evaluated through an implementation, showing
that the usage of meta information is enabling the fast and easy
integration of data in the digital services for Industrie4.0.

Index Terms—Industry 4.0, Asset Administration Shell, Meta
Data, OPC UA, Knowledge Exploration, Big Data Platform

I. INTRODUCTION

Different IoT (Internet of Things) enabled devices, together
with other already existing ones are generating and collecting a
huge amount of data [1]. According to the study by McKinsey
”manufacturing stores more data than any other sector -
close to 2 Exabyte of new data in 2010” [2]. This data is
unstructured, miscellaneous and complex to handle. However,
valuable information can be derived from this data.
The usage, integration of and access of this data can lead to an
extensive benefit in areas like production, decision making and
prediction. Nevertheless, generating benefit out of such data is
challenging. It is due to the heterogeneity of the environment,
data access and a lack of interoperability. As a result, a
solution is desirable that can index and process large amount
of data, respectively metadata, in order to enable user friendly
knowledge exploration. Hence, in this paper a concept and
implementation for an industrial knowledge platform, capable
of locating required industrial data and storing its meaning
in a knowledge database is presented. The metadata in the
database can be queried by users as well as digital services
to find and use appropriate data available from production

Fig. 1: Overview of Knowledge Exploration

environments. To achieve this, ”classic” big data approaches
were combined with standardized concepts and developments,
that have been established since the launch of the Industrie 4.0
initiative. This can ensures that the solution is able to collect
data from industrial environments using I4.0 technologies,
index it, make it searchable and provide it to digital services.
A digital services in context of this paper is any virtual entity
that can serve, work or gaining a benefit out of the available
data.
One main contender for standardized communication in I4.0
is the Open Platform Communications Unified Architecture
(OPC UA). For this reason, OPC UA is used to gather
industrial data. On the classic IT side, technologies such
as Docker, Apache Kafka and Database solutions for the
operation of different components is used. In summary, the
knowledge platform, pursues the following three objectives:
• Provide an interface to users and digital services, which

allows to search for data in the platform and fetch it for
further processing.

• Provide components required to integrate, transport and
pre-process the data automatically.

• Provide a data discovery mechanism, which continuously
updates the knowledge database.

Figure 1 sketches the concept of the whole solution and the
knowledge exploration.
The remainder of the paper is structured as follows. Section
II introduces the state of the art. Section III presents specific
challenges from industry and requirements, from which the
concept and the functions of the knowledge exploration can be
derived. Section IV describes the architecture and introduces
technologies used. Section V shows how the data gathering
and access has been implemented. This section presents the
Proof-of-Concepts implementation of the proposed architec-



ture respectively platform. The final section VI discusses and
summarises the results and gives an outlook on future work.

II. STATE OF THE ART

When sensors, actuators and computers are connected via
the Internet, they form the so-called IoT. Between these
different things information can be exchanged and delivered to
digital services [3]. The IoT is available in several application
areas like smart manufacturing, smart home, smart city, trans-
portation systems and smart grid. In context of industrial appli-
cations manufacturer are implementing the IoT technology for
intelligent communications in their applications. So the IIoT
(Industrial IoT) is describing the IoT for industrial applications
[4]. The term Industrie 4.0 (I4.0) describes how the IoT or
more specifically IIoT will improves the production, engineer-
ing and management processes of the industry. Real assets
are represented by virtual components in the digital world,
resulting in permanently connected systems, also known as
Cyber-Physical Systems (CPS) [5]. If these assets, in context
if I4.0, are production systems, cyber physical production
systems (CPPS) are created [6].
The core of distributed industrial components relies on reliable
exchange of information. In the beginning the industrial com-
munication was realized based on fieldbus systems. Nowadays
the majority of systems are communicating through Ether-
net based networks. Since the last years they are gradually
extended by wireless networks that become more and more
robust and real-time capable. The adoption of the IoT and CPS
facilitates the integration of inceased ammount of information
flows in the automation industry [7].
A defacto standard communication protocol incorporated
within Industrie 4.0 is OPC UA. It enables inter-operable
and standardized communication between machines (M2M)
and higher systems [8] as well as information modelling.
Alternative approaches for I4.0 communication such as MQ
Telemetry Transport (MQTT) [9] or Constrained Application
Protocol (CoAP) [10] offer low memory requirements and data
overhead.
In classical computer science the automation of processes
using available semantics is already established. It is possible
to generate and execute code from UML models [11]. Further-
more, DevOps automates the processes of development and
operation, to enable faster and more efficient implementation
of software development projects [12]. Both examples use
knowledge or semantics that have been enriched for the
respective applications. Projected on industrial applications
there are already first suggestions which point in this direction.
In [13], a conceptual model and necessary elements for a real
world implementation, towards knowledge based and intelli-
gent systems for Industrie 4.0 was proposed. In this approach
the CPS and CPPS are generating data that is transmitted in a
standardized form to semantic enhanced CPS. Apps and other
application are using this information to provide a value out of
this data. At the same time CPS on the shop floor communicate
with CPS in the cloud and convert signals into knowledge
(Figure 2). A more concrete architecture for interactive data

Fig. 2: Architecture proposed by [13]

exploration in a Smart Factory was suggested by [14]. In
their architecture, a physical machine is producing data, that is
transmitted by a Platform Service Bus. This bus has interfaces
to databases, storing meta data, process data and summarised
data. On the other side are services like a state detection or
data exploration using that data. A GUI is provided to interact
with this services.

III. CHALLENGES AND REQUIREMENTS

In industrial production systems, data is collected/generated
by sensors, actuators and PLC programs. This data can offer
companies comprehensive added value, if it can be integrated
into corresponding services such as AI algorithms, visualiza-
tions or systems like an Enterprise-Resource-Planning. In this
context, companies face several challenges that are not trivial
to solve, such as:
• Companies often do not know what data is available in

their production
• The meaning of individual values is not known.
• The semantic connection between the data is not clearly

recognizable due to missing semantic annotations.
• The vast amount of data is difficult to handle.
• It is challenging to find the right information in the raw

data.
• The use of different technologies makes comprehensive

data integration difficult.
The challenges mentioned above can be classified according
to different causes. Missing semantic relationships or links
between data, that logically supplement each other arise out
of insufficient semantic annotation. The lack of access and
overview of the existing data, on the other hand, indicates
insufficient data integration and preparation on a suitable
platform. The first cause can only be fixed by an extensive
metadata description, which is presupposed in the context of
this paper. Therefore, the solution proposed in this paper has
been designed to eliminate the second cause. To achieve this,
the following requirements have been formulated:
• A) The creation and configuration of platform services

have to be done dynamically:
The knowledge platform does not know which resources
and software components have to be available and to what



extent. This information results from the interaction of
the users or the input parameters of the digital service
requesting certain data. As soon as users or services
find suitable information in the knowledge database,
various services of the platform must be extended or
instantiated in the background. These services ensures
that the selected data will be delivered to its target and
hence have to be dynamically creatable, depending on
which input parameters are used, that are either provided
by the user, the service or its metadata.

• B) The current operation of the platform needs to be
registered:
As soon as data has to be available for applications, a
series of checks must be triggered in the background to
prevent the multiple creation of a service or usage of
resources for already available data. Data that has already
been indexed, for example, should not be collected twice.
Data that was already chosen and is available for services
does not require another subscription or transmission. On
the other hand, data pipelines must be removed if they are
no longer used. This ensures that the solution is always
up to date and the vitality of the system is maintained.

• C) The data from production shall be integrated with
standardized technologies and existing metadata:
As already mentioned in the introduction, OPC UA is the
interface to the production and is the main technology,
with which the data integration will be realized. In
addition the concept of the Asset Administration Shell
(AAS) provides information about assets in production
environments [15]. The AAS may be the logical repre-
sentation of a simple component, a machine or a plant at
any level of the equipment hierarchy and will contain
all information about the entire product life cycle of
an assets. Together with the asset it represents the I4.0
component [16]. The structure of an AAS can be mapped
with an OPC UA information model. To ensure, that this
mapping is standardized, the Plattfrom Industrie 4.0 is
running a working group, which works out the necessary
Companion Specification for OPC UA and the AAS [17].
Both technologies, OPC UA and the AAS, provides
already an extensive amount of information about the
production and the data.

• D) Users needs an interface to interact with the
knowledge database:
The user needs an interface to interact with the infor-
mation stored in the knowledge database. In order to
guarantee an intuitive operation, a search realized via a
web application can be used to search for suitable data
within the database. One advantage of the implementation
is, that the shop floor or CPPS can be explored from
everywhere. The results are displayed in prepared form
and the user can select relevant data. The data will be
represented by its meta information such as the associated
OPC UA server or AAS, the data type or a description.
This information will enable the user to choose the
appropriate data.

• E) The data must be stored in such a way that it can
be searched quickly and easily:
Via the web interface, one can search for the data needed
for the current application. A service can communicate
directly with the system, but for both it has to be possible
to search for specific information. The metadata stored
in the Knowledge Database is searched accordingly. This
search must be as fast, flexible and accurate as possible.
On the one hand, the search needs to provide the possi-
bility to search freely, so that both the metadata values
and the metadata names itself can be searched for the
keyword(s). On the other hand, it is necessary to be able
to define a search as specific as possible. Whether to
search in concrete metadata fields, a combination or to
search for substrings in the available information.

Finally, the data has to be transmitted to the services. For this
a middleware is needed and will not considered in this paper.
It is assumed, that the middleware is able to orchestrate the
dataflow, providing subscribed data from the shop floor level
and can interact with the knowledge platform.

IV. PLATFORM ARCHITECTURE

With respect to the introduced requirements the architecture
displayed in figure 3 shows the layout of the solution. The
architecture is developed to enable knowledge exploration
of industrial data, that is realized through the components
displayed in the upper boxes.
As already mentioned we assume that the data at the shopfloor
is provided via OPC UA or/and the Asset Administrations
Shell. Nevertheless the concrete infrastructure of the network
(number of servers, endpoints, AAS locations) are not known.
So the question is: Where are my OPC UA servers/AAS and
how many exists? Therefore the Shopfloor component is nec-
essary, to ensure that data can be integrated independently into
the platform. OPC UA offers the concept of Discovery Servers
to meet this requirement. Discovery servers always running at
the same address inside the network and all available OPC UA
servers can register to them [18]. Inside the discovery server,
the OPC UA servers are registered with their endpoints. This
is the only necessary information to get connected to them. For
collecting the information of the OPC UA servers, one has then
just to ask the discovery server for the registered endpoints.
It is then possible to read out the information models via an
OPC UA client.
Until now there is no discovery procedure available for the
AAS but there are ongoing standardization activities in the
Plattform Industrie4.0. In the ongoing standardization three
AAS types exists [19], [20]:

1) Type 1 AAS provides a standardized structuring of
information belonging to an asset in a file format.

2) Type 2 AAS extends the Type 1 AAS with a standard-
ized interface to external clients. To interact with this
AAS type, an application need to support the interface.

3) A type 3 AAS has, in addition to type 2, functionalities
to make an I40 Asset an interacting component which
can support system integration and system interaction.



Fig. 3: Platform Architecture

In the architecture we are able to integrate the AAS as a file
(Type 1) and AAS modeled via the OPC UA information
model. The AAS can either be stored directly in the AAS
Registry or the path to the AAS is stored accordingly. In the
second case, it must be ensured that the Meta Data Collector
can reach and read the AAS via the network. The supported
AAS file type is JSON as it can be exported from the AAS
Package Explorer [21]. The AAS Package Explorer is an open
source software, that can be used to model AAS. In addition,
it provides functionalities to import, export and serve the
modeled AAS. From the registry the procedure is the same
as for the OPC UA part. All registered AAS are parsed and
will be injected in the knowledge database. This and the OPC
UA Discovery is part of the solution linked to requirement C.
The knowledge exploration is responsible for the collection of
knowledge from the shopfloor and can be matched to the re-
quirements A, B, D and E. First of all, the component contains
the central Knowledge Database in which all information from
the production level is stored. In order to fill this database, the
information has to be extracted from the OPC UA servers and
AAS. Too access the OPC UA data a corresponding client
is implemented. It can be expected that the AAS can also
be mapped via an OPC UA information model. In this case
the AAS registry need not be concerned. But for the AAS
type 1 which are not implemented with OPC UA, the registry
has to be queried. The needed service is called Meta Data
Collector and will interact with the Discovery Server and the
AAS Registry. This component will continuously check, if

there are changes in the registry and will provide the up-to-
date information to the database. In the knowledge database
only meta information, which is describing the semantic of
the available data is stored. In the end the real process data,
that is described through that data is subscribed.
The database can be queried through a web application,
looking for suitable data. The web application is offering
a simple search form. The concrete queries depend on the
database technology used and are described in the upcoming
chapter V. The services that want to request data directly must
do this also via a query that depends on the database. As soon
as the query was processed by the database and results has
been found, it will be displayed in the web application. When
the query was executed by a services, it has to be capable
to handle the answer. Depending on the selected data, the
solution must check whether data subscriptions already exist
for some of the requested data. This point is very important to
ensure that no data is send twice. To ensure that, the Operation
Registry will hold this information. It has to know about the
current status and instances of the relevant components. In
general the following information should be available and
always up-to-date inside the registry:
• The location (Address) of available OPC UA Discovery

Servers
• The already subscribed OPC UA Data
• Parameter for the operation of the platform (i.e. Refresh

interval, path to AAS storage)
So the registry is maintained and filled by the Web Interface



and the Meta Data Collector. The Knowledge Exploration
component is sending a JSON, with the necessary information
for creating the data exchange between the different platform
components, the shopfloor and the services to the middleware.

V. IMPLEMENTING KNOWLEDGE EXPLORATION

All software components presented here were implemented
in Docker Container.

A. Shoopfloor level

For this component the OPC UA Discovery Server and the
AAS registry were implemented. For the OPC UA Discovery
Server implementation the open source Python framework
was used [22]. The OPC UA Discovery Server is providing
Sign&Encrypt security and is waiting for OPC UA server
for registration. In the server just one OPC UA method
GetRegisteredEndpoints was implemented, returning a list of
the currently registered endpoints. This method will be used
by the Meta Data Collector.
To monitor the behavior of the server an additional OPC UA
client is integrated in the discovery service. This client is
printing information about the number of currently registered
servers, a list of the endpoints and is indicating if the discovery
server is running as expected. When the individual OPC
UA servers registering to the Discovery Server by calling
RegisterToDiscovery service, the client gets a list of endpoint
URLs (Uniform Resource Locator) of the registered OPC
UA servers by calling FindServer service [22], [23] from
the Python OPC UA framework. A Python job scheduler is
running at regular time interval to monitor the availability of
the registered OPC UA servers. When a registered OPC UA
server is stopped or become unavailable, the server registration
expires and the endpoint URL of the server was removed from
the registered server list. When the same OPC UA server starts
or is available again, it will be registered to the Discovery
Server and the monitoring client will display the information.
The AAS registry is also a Python implementation. Consisting
of a data structure holding the paths to AAS-Files, a static
information about the directory where AAS are stored directly
and a list of the names of the AAS in this directory. There are
two interfaces in the application to the shopfloor side. The first
one is providing an endpoint to add a new AAS-Path to the
data structure and is listening to incoming calls. The second
one is continuously querying the directory where AAS-Files
are placed and is updating the the internal list of the files. To
the knowledge exploration component an additional interface
was implemented, which can be queried by the Meta Data
Collector. This interfaces is providing the stored information
about AAS paths and file names to that component. Figure 4
is sketching the shopfloor implementation.

B. Knowledge Exploration

The main part was the implementation of the knowledge
exploration component. In the upcoming subsection the main
implementations, MetaDataCollector, Operation Registry and
Knowledge Browser are explained. The database itself is not

Fig. 4: Implementation Shopfloor components

self developed. Since there are numerous database solutions
for storing the meta information of the data, nothing new
was implemented, but rather an already well-established and
suitable database for the solution was integrated. Due to the
fact that the focus of the solution is on indexing and searching
of data, Elasticsearch [24] was chosen as database technology.
Thus, the API provided by Elastic is used to query for data
and integrated into the Browser Component.

1) Meta Data Collector: The task of the Meta Data
Collector is to gather the meta information out of the OPC UA
servers and AAS‘s, transfer them into the knowledge database
and make sure that it has always the up-to-date index. This
implementation is also developed in Python and is divided
into two modules. The OPC UA module is expecting two
static parameters on start. The IP-addresses of the OPC UA
Discovery Servers and the update interval in seconds. The
second parameter indicates how often the Meta Data Collector
should check if the registered OPC UA servers or AAS´s has
changed, to update the knowledge database. The heartbeat
determines the execution of the application and is valid for
both modules.
Inside the collector an OPC UA client is running, calling the
Method GetRegisteredEndpoints of every available discovery
server every heartbeat. As soon as the application starts, the
information models of all registered servers are indexed. Every
OPC UA server gets its own index, that is used in the Elastic
database and is constructed from OPC endpoint URL by
replacing all, from Elastic, forbidden characters (′/′and′ :′),
with an underscore. For example an index can look like:
opc.tcp 127.0.0.0.1 4840. Since the depth of the information
models is not known, they are searched recursively down to the
leaves and the Nodes are exported. The Meta Data Collector is
only indexing the Object, Variable and Property Nodes of the
OPC UA information model. The information that is collected
form every node and is searchable through Elastic is:



List 1: Listing of OPC UA Meta data

• BrowseName
• DataType
• Description
• NodeId consisting of NamespaceIndex and Identifier
• NodeClass
• NodeIds of childs
• Server endpoint with security configuration

Especially the NodeId´s of child nodes are an important
information when searching for suitable data, respectively
the concrete value. When looking at the following sample
information model (Figure 5), one can see, that the values
holding different temperature values of different meaning, are
stored in the children of the object Temperature. If one just
want to subscribed the temperature-object it will fail.

Condition Monitoring
Temperature

Medium
Value

Threshold
Value

Vibration
Flow Rate

Fig. 5: Sample Informationmodel snippet

As a consequence, this means that a search for ”Tempera-
ture” without the knowledge of possible children of this node
cannot provide a suitable result. Therefore it is important to
store the NodeId’s of the children of nodes in the index to
include them in the search process or search result.
At the next heartbeat, either the list of registered servers
may or may not have changed. If it has changed, it is
clear that the index of the knowledge database also needs
to be updated by adding or deleting the data of the server
that has changed. In addition to these obvious changes, the
information model of the already indexed servers may also
have changed, because nodes may have been added or removed
at runtime. To determine whether the information model of
a server has changed, compared to the one already indexed,
a naive approach was taken and the number of nodes was
compared. This approach is naive in that, it cannot determine
whether the values of the individual attributes have changed.
This case is deliberately not covered because it requires a
comparison of all attributes or their values, which becomes
too voluminous, when the information models are of a certain
size. Nevertheless it is possible to update just all indexes
independently, if the criteria has found changes or not. The
sequence diagram in figure 6 is showing the operation of the
OPC UA Meta Data collection.

The collection of the AAS information is much easier, than
for the OPC UA data. All available JSON´s of AAS are
parsed to an JSON Object. This JSON Object is stored in the
knowledge database and can be then searched. Additionally

Fig. 6: Operation of OPC UA Meta Data collection

the number of JSON attributes is stored to be able to apply
the same criteria for updating the database as for the OPC UA
data. If the AAS is not modeled as an OPC UA server it is
checked if the AAS Model is somehow linked to an OPC UA
server. This information is important to subscribe the data out
of the OPC UA Server, that was described in the AAS.

2) Schema of Meta Data: There is a schema for the
OPC UA meta data that is used for storing in the Knowledge
Database. The schema a is highly connected to the variables
listed in List 1. In addition to them, there are fields from Elas-
tic as example the index and fields that getting filled through
the Meta Data Collector. At the moment these fields area:
addressSpaceSize, encryption and secuirtyMode. An example
OPC UA JSON using the schema is shown in Listing 1. Some
braces and attributes where removed because of space. For the
AAS available as a file no schema was defined, because the
AAS are directly stored in their JSON form in the Elastic
database.

3) Operation Registry: The Operation Registry provides an
interface through which the other components of the platform
can retrieve the information for a seamless execution and
operation. As the other components, this part is written in
Python and is offering the following functions:
• ReturnPlatformHeartbeat: When receiving the request

the registry is returning the heartbeat of the platform. The
value has to be set on the startup of the platform via an
environment variable. The Meta Data Collector is asking
for this value on its initialization. It is send in seconds and
in a small JSON string. This value will be processed by
the Meta Data Collector and the value is set accordingly.

• AddDiscoveryEndpoints: This is an external interface
where new discovery endpoints can be registered at the
knowledge platform. It is expecting the data over a REST
call as the other functions and as a JSON. The application
is checking which endpoints are already there and is



Listing 1: OPC UA Meta Schema

” in de x ” : ” opc . t cp 10 . 1 0 5 . 4 . 4 1 48520 ” ,
” s o u r c e ” : {

” module ” : ” S c h e m a R e p r e s e n t a t i o n ” ,
” node ” : {

” browseName ” : ” S w i t c h i n g s t a t u s ” ,
” da taType ” : ”BOOL” ,
” d e s c r i t p i o n ” : ” Module a c t i v e o r n o t ” ,
” d isp layName ” : ” S w i t c h i n g s t a t u s ” ,
” n o d e C l a s s ” : 1 ,
” nodeId ” : {

” i d e n t i f i e r ” : 1647 ,
” namespace index ” : 2 ,
” n o d e i d t y p e ” : 2

} ,
” c h i l d r e n ” : [
{

” i d e n t i f i e r ” : 1622 ,
” namespace index ” : 2 ,
” n o d e i d t y p e ” : 2

}
] ,
” s e r v e r ” : {

” a d d r e s s S p a c e S i z e ” : 245 ,
” e n c r y p t i o n ” : [
” h t t p : / / o p c f o u n d a t i o n . o rg /UA/
S e c u r i t y P o l i c y #None”
] ,
” e n d p o i n t ” : ” opc . t c p : / / 1 0 . 1 0 5 . 4 . 4 1 : 4 8 5 2 0 ” ,
” s e c u r i t y M o d e ” : [

1 ,
3 ,
2

]

adding them to the registry. The opposite call RemoveDis-
coveryEndpoints is deleting the listed endpoints form the
registry.

• GetDiscoveryEndpoints: On this call the MetaDataCol-
lector is getting the list of the current registered endpoints
in a JSON that has the same structure as above. Then the
collector is processing the discovery servers as described.

• AddSubscribedOPCUAData: Here the already sub-
scribed OPC UA Data is logged to the registry. A JSON
containing the NodeID´s and corresponding OPC UA
sever endpoints is sent and added to a database main-
tained by the registry. The RemoveSubscribedOPCUA-
Data function behaves accordingly and uses the same
JSON format. This endpoint is used by the Data Trans-
portation component, which knows if pipelines has been
stopped or changed. There is no comparable function for
AAS data, as it is assumed that the actual process data
is available in an OPC UA server.

• GetSubscribedOPCUAData: This method is used by the
Browser component to find out, if OPC UA data is already
subscribed. This information is handed over to the Data
Transportaion component, which is going to create the
new data pipelines.

4) Browser: The Knowledge Browser is a Web Application
and is developed with the Django Framework [25]. When
opening the App, one can put a query based on the Elastic
DSL for Python [26]. It is possible to search in concrete or

all fields, for substrings and connecting different search terms
with and/or. Sample queries could be:
• node.browseName:Temperature: Result contains all ele-

ments where the BrowseName has the text Temperature
• node.browseName:Temperature OR

node.description:Celsius: Here the Results has the
name Temperature and the string Celsius in their
description

• server.endpoint:opc.tcp://a.b.c.d:*: The star is the wild-
card indicator in Elastic and a query formed like this will
return all elements where the server string has this format.
With this for example you can find all data provided on
the same machine.

Due to the fact that there is no schema for AAS that have
not been modelled via an OPC UA information model, it is
possible to search freely in the AAS data.
Elastic is returning the full JSON of every found element of
its database. Then the WebApp starts itself, in case of OPC
UA Data, to query the OPC UA children of these elements.
This is done until all elements and children, that matching
the query, are found. The full JSON´s are stored temporary,
but in the WebApp just selected information are displayed.
Therefore the JSON is parsed for the name of the Value, the
NodeID, server endpoint and description. In the result page,
all data points respectively the linked meta data of them are
displayed, in the same structure as they are in the OPC UA
information model. Figure 7 displays the style of the result
page for a sample query.

Listing 2: JSON describing selected data

[
{

” d a t a b a s e ” : ” I n f l u x ” ,
” e n d p o i n t ” : ” opc . t c p : / / 1 0 . 1 0 5 . 4 . 4 1 : 4 8 5 2 0 ” ,
” i d e n t i f i e r ” : ”1686” ,
”name ” : ” Tempera tu r eVa lue ” ,
” namespace index ” : ” 2 ” ,
” n o d e i d t y p e ” : ”2”

}
]

Some of the displayed results has additional checkboxes.
The reason is, that one can only subscribe Variables and
Properties of OPC UA. The WebApp is already recognizing
these elements and enables the selection field only for these
kinds of nodes and is disabling it for Objects. With the
confirmation by clicking on the ”Select” Button a JSON string
displayed in Listing 2 is generated and send to the Data
Transportation component.

VI. CONCLUSION AND OUTLOOK

In summary, the solution provides components that enable
digital services and users to find and receive necessary process
data from the shopfloor. It indexes existing data, makes them
search-able and passes them on to the final destination. The
main technology for the integration of data into the knowl-
edge exploration is OPC UA. Additional knowledge is added
through the Asset Administration Shell. It is continuously



Fig. 7: Resultpage of the WebApp

checked if the data on the shopfloor is changing. These
changes are synchronized with the knowledge databases. The
Elastic database is storing the knowledge respectively meta
data. The Elastic API allows to query the databases by users
and services. The services can directly communicate with
the databases and Users can use the presented Web Tool.
Chosen data, necessary configuration information and the
target services is send to the Middleware to establish the
data flow. This part is only briefly covered in the paper to
depict the whole story and is still under development. Here the
containers for the OPC UA data subscription and transport are
created dynamically and maintained. This pipeline will ensure
that the data will be transmitted from the shop floor to their
designated destination. Finally the services can use the selected
data for gaining a value. The whole operation of the solution
is registered to make sure, that no resources are wasted, by
duplicating existing data subscriptions or transmissions.
Next steps will be the integration of AAS of type 2 and
3. For type 2 AAS a dedicated discovery mechanism is
necessary to collect information out of them. For type 3 AAS,
direct integration into the knowledge platform is being sought.
However, the efforts to achieve this are still in their first stages
and are current research topics.

ACKNOWLEDGMENT

Parts of this article were developed within the project In-
dustrial Automation Platform of the excellence cluster itsOWL
(Intelligente Technische Systeme OstWestfalenLippe).

REFERENCES

[1] S. Ferber. (2012) Industry 4.0–germany takes first steps toward the next
industrial revolution.

[2] M. Baily and J. Manyika, “Is manufacturing “cool” again,” Project
Syndicate, vol. 21, 2013.

[3] K. Vandikas and V. Tsiatsis, “Performance evaluation of an iot platform,”
in 2014 Eighth International Conference on Next Generation Mobile
Apps, Services and Technologies. IEEE, 2014, pp. 141–146.

[4] D. Kiel, C. Arnold, M. Collisi, and K. Voigt, “The impact of the indus-
trial internet of things on established business models,” in Proceedings
of the 25th international association for management of technology
(IAMOT) conference, 2016, pp. 673–695.

[5] F. Pethig, O. Niggemann, and A. Walter, “Towards industrie 4.0 compli-
ant configuration of condition monitoring services,” in 2017 IEEE 15th
International Conference on Industrial Informatics (INDIN), July 2017,
pp. 271–276.

[6] L. Monostori, “Cyber-physical production systems: Roots, expectations
and r&d challenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014.

[7] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, March 2017.

[8] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer Science & Business Media, 2009.

[9] “OASIS, MQTT Version 3.1.1,” ”http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html”, ”[Online; accessed
May 15, 2019]”.

[10] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC, vol. 7252, pp. 1–112, 2014.

[11] W. Sadiq, “System and method for automated code generation using
language neutral software code,” Aug. 28 2007, uS Patent 7,263,686.

[12] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[13] C. Toro, I. Barandiaran, and J. Posada, “A perspective on knowledge
based and intelligent systems implementation in industrie 4.0,” Procedia
Computer Science, vol. 60, pp. 362–370, 2015.

[14] A. Bagozi, D. Bianchini, V. De Antonellis, A. Marini, and D. Ragazzi,
“Interactive data exploration as a service for the smart factory,” in 2017
IEEE International Conference on Web Services (ICWS). IEEE, 2017,
pp. 293–300.

[15] D. Lang, S. Grunau, L. Wisniewski, and J. Jasperneite, “Utilization of
the asset administration shell to support humans during the maintenance
process,” in 17th International Conference on Industrial Informatics
(IEEE-INDIN 2019), Helsinki, Finland, Jul 2019.

[16] J. Bock, C. Diedrich, A. Gössling, R. Hänisch, A. Kraft, F. Pethig,
O. Niggemann, J. Reich, F. Vollmar, and J. Wende, “Interaktions-
modell für industrie 4.0 komponenten,” in Entwurf komplexer Au-
tomatisierungssysteme : EKA 2016 ; Beschreibungsmittel, Methoden,
Werkzeuge und Anwendungen ; Magdeburg : Inst. für Automation und
Kommunikation e.V., 2016.

[17] “I4AAS – Industrie 4.0 Asset Administration Shell,”
”https://opcfoundation.org/markets-collaboration/i4aas/”, ”[Online;
accessed January 17, 2020]”.

[18] OPC Unified Architecture - Part 7: Discovery and Global Ser-
vices(IEC/TR 62541-12:2018), IEC Std., 2018.

[19] “Details of the Asset Administration Shell. Part 1 - The exchange
of information between partners in the value chain of Industrie 4.0,”
Plattform I4.0, 2018.

[20] “Semantik der Interaktionen von I4.0-Komponenten,” AUTOMA-
TION – Leitkongress der Mess- und Automatisierungstechnik, baden-
Baden,2018.

[21] “AAS PackageExplorer,” ”https://github.com/admin-shell/aasx-package-
explorer”, ”[Online; accessed January 17, 2020]”.

[22] O. Roulet-Dubonnet, “Python OPC-UA Documentation,” Dec. 2018.
[23] S. K. Panda, T. Schröder, L. Wisniewski, and C. Diedrich, “Plug produce

integration of components into opc ua based data-space,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1, Sep. 2018, pp. 1095–1100.

[24] “Elasticsearch,” ”https://www.elastic.co/de/products/elasticsearch”,
”[Online; accessed January 17, 2020]”.

[25] “Django,” ”https://docs.djangoproject.com/en/3.0/”, ”[Online; accessed
January 17, 2020]”.

[26] “Elasticsearch Python,” ”https://www.elastic.co/guide/en/elasticsearch/clie
nt/python-api/current/index.html”, ”[Online; accessed January 17,
2020]”.


